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Motivations

Paradigm shift in financial modeling

➢ Lessons from the GFC: interconnectedness of assets and emergence of

abrupt structural breaks

➢ Growing importance of networks during turbulent periods as risks and

shocks spread across financial infrastructure

➢ New evidences: Covid-19 Pandemic (Lenza and Primiceri, 2020, Carriero

et al., 2021), Russo-Ukrainian war (Umar et al., 2022, Karkowska and

Urjasz, 2023)

Need for new approaches

➢ No existing framework to capture structural breaks when measuring

connectedness among participants of the network

➢ I propose a Bayesian approach to estimate connectedness in the

presence of structural breaks
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Preceding Studies

Capturing systemic risks

➢ Conditional Value at Risk (Adrian and Brunnermeier, 2011)

➢ Systemic and Marginal Expected Shortfall (Acharya et al., 2012)

➢ Granger-causality-based networks (Billio et al., 2011)

➢ Forecast Error Variance Decomposition based measures (Diebold and

Yilmaz, 2009, 2012, 2014)

Dynamic analysis of financial networks

(i) Rolling-window VAR models (Diebold and Yilmaz, 2012)

(ii) TVP-VAR with approximate Kalman-filtering method and forgetting factors

(Koop and Korobilis, 2013, Antonakakis and Gabauer, 2017)

(iii) Large Bayesian TVP-VAR model (Korobilis and Yilmaz, 2012)

Critics of existing methods

(i) slow adjustment to changes, arbitrary window size, loss of observation

(ii) overestimates real time-varying tendencies

(iii) can not account for larger, abrupt breaks in the system
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This Study

Value added

➢ TVP-VAR-SV model with hierarchical prior specifications (Prüser, 2021)

mixed with the DY-framework

➢ Assessing estimation efficiency of the two priors through a three-step

Monte Carlo simulation

Monte Carlo simulations

1. Univariate unobserved component model to analyze the properties of

the priors on a broader scale than Prüser (2021) has done it

2. Bivariate TVP-VAR-SV(1) with three different structural break regimes

3. Applying the DY-framework on the time series generated in Step 2

Results

➢ The accuracy of the two prior specifications heavily dependent on variance

levels and break-profile of the system

➢ The accuracy patterns descend when we estimate connectedness

➢ The horseshoe prior is more accurate around the structural break
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Methodology



Bayesian Framework I - Model Description

Time-Varying Parameter Vector Autoregression with Stochastic Volatility

(TVP-VAR-SV) following Eisenstat et al. (2015)

Structural form:

B0tyt = µt +B1tyt−1 + · · ·+Bptyt−p + ϵt, ϵt ∼ N (0,Σt)

Reduced form:

yt = X̃tβt +Wtγt + ϵt, ϵt ∼ N (0,Σt)

State-space representation:

yt = Xtθt + ϵt, ϵt ∼ N (0,Σt)

Time varying parameters:

θj,t = θj,t−1 + ηj,t, ηj,t ∼ N (0, Vθj,t)

Stochastic volatility:

Σt = diag(exp(h1,t), . . . , exp(hn,t)) and

hi,t = hi,t−1 + ξi,t, ξi,t ∼ N (0, Vhi,t)
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Bayesian Framework II - Prior Specifications

Chan and Eisenstat (2018), Prüser (2021)

Inverse Gamma Prior

➢ Assume the prior variances of θt and to be constant

➢ Vθj ∼ IG(νθj , Sθj ), Vhj ∼ IG(νhj , Shj )

➢ Shape parameters: νθj = νhj = 5

➢ Scale parameters Sθj and Shj are set to produce means of 0.012 and 0.12

➢ Favors many smaller, gradual changes

Horseshoe Prior

➢ Global-local shrinkage prior, often used with sparse settings (NOT HERE!)

➢ Vxj,t = τxjλxj,t ,
√
τxj ∼ C+(0, 1),

√
λxj,t ∼ C+(0, 1), x ∈ {θ, h}

➢ τ global shrinkage parameters, λ local shrinkage parameters

➢ Allows for many smaller gradual changes, few larger abrupt breaks or the

mix of these
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Diebold-Yilmaz Framework

Advantages

➢ No need for special conditions apart from the ones necessary for the

identification of the VAR model

➢ Easy interpretation of the results: weighted and directed graphs

➢ Suitable for both macro- and micro-level analysis

➢ Generalization of Granger-causality-based networks

Concept

➢ Base: VAR model in its Wold-representation form

➢ Forecast Error Variance Decomposition (FEVD) from non-linear

transformation of the coefficient and covariance matrices

➢ The transmission of shocks among time series can be analyzed by this

decomposition

➢ Summarize the FEVDs for all time series in the DY-connectedness table

➢ Aggregation by row: shocks received from the system, aggregation by

column: shocks emitted to the system
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Simulation Study



Univariate Example I - Break in Unobserved Component

Univariate Unobserved Component Model with Stoch Vol (Prüser, 2021)

yt = τt + ϵyt , ϵyt ∼ N (0, exp(ht)) (1)

τt = τt−1 + c1(t = tb) + ϵτt , ϵτt ∼ N (0, σ2
τ ), c = 2, σ2

τ = 0.12 (2)

ht = ht−1 + ϵht , ϵht ∼ N (0, σ2
h), σ2

h = 0.12 (3)

MAEτ =
1

T × S

T∑
t=1

S∑
s=1

|τt − τ̂s,t|

Table 1: Simulation results: Univariate

example, abrupt break in a coefficient

horseshoe inverse gamma

c = 0 0.07 0.07

c = 2 0.05 0.11
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Univariate Example II - Break in Stochastic Volatility

Univariate Unobserved Component Model with Stoch Vol

yt = τt + ϵyt , ϵyt ∼ N (0, exp(ht)) (4)

τt = τt−1 + ϵτt , ϵτt ∼ N (0, σ2
τ ), σ2

τ = 0.12 (5)

ht = ht−1 + ch1(t = tb) + ϵht , ϵht ∼ N (0, σ2
h), ch = 0.5, σ2

h = 0.12 (6)

MAEh =
1

T × S

T∑
t=1

S∑
s=1

|ht − ĥs,t|

Table 2: Simulation results: Univariate

example, abrupt break in a coefficient

horseshoe inverse gamma

c = 0 0.07 0.08

c = 2 0.06 0.09
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Bivariate TVP-VAR-SV I - Break in One Coefficient

Model Equations (Antonakakis et al., 2020, Prüser, 2021)

yt = Btyt−1 + ϵyt , ϵyt ∼ N (0, diag(ht)) (7)

Bt = Bt−1 +Cb,t1(t = tb) + ϵbt , ϵbjk,t ∼ N (0, σ2
b ) (8)

ht = ht−1 + ϵht , ϵht ∼ N (0,Σh) (9)

B0 =

[
0.6 0.3

0.3 0.6

]
, Cb,t =

[
0.2 0

0 0

]
, Σh =

[
0.12 0

0 0.12

]

Mean Absolute Error

MAEb =
1

T × S × 4

S∑
s=1

T∑
t=1

K∑
k=1

J∑
j=1

|bjk,t,s − b̂jk,t,s|
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Bivariate TVP-VAR-SV I - Results

Table 3: Simulation results: VAR, abrupt break in one coefficient

c = 0.2 c = 0

σ2
b 0.02 0.01 0.001 0.0001 0.02 0.01 0.001 0.0001

horseshoe 0.0100 0.0061 0.0019 0.0008 0.0098 0.0061 0.0020 0.0009

inverse gamma 0.0123 0.0065 0.0010 0.0003 0.0118 0.0063 0.0009 0.0002

➢ Results differ from those of Prüser (2021): the superiority of the horseshoe

prior is not that straightforward

➢ With relatively higher parameter variance, the horseshoe prior is more

accurate, the inverse gamma prior is better with lower variance levels

➢ With a given level of variance, the horseshoe prior is better in the presence

of breaks and the inverse gamma prior is better in their absence
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Bivariate TVP-VAR-SV II - Break in All Coefficients

Model Equations (Antonakakis et al., 2020, Prüser, 2021)

yt = Btyt−1 + ϵyt , ϵyt ∼ N (0, diag(exp(ht))) (10)

Bt = Bt−1 +Cb,t1(t = tb) + ϵbt , ϵbjk,t ∼ N (0, σ2
b ) (11)

ht = ht−1 + ϵht , ϵht ∼ N (0,Σh) (12)

B0 =

[
0.6 0.3

0.3 0.6

]
, Cb,t =

[
0.2 −0.2

−0.2 0.2

]
, Σh =

[
0.12 0

0 0.12

]

Mean Absolute Error

MAEb =
1

T × S × 4

S∑
s=1

T∑
t=1

K∑
k=1

J∑
j=1

|bjk,t,s − b̂jk,t,s|
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Bivariate TVP-VAR-SV II - Results

Table 4: Simulation results: VAR, abrupt break in all coefficients

c = 0.2

σ2
b 0.02 0.01 0.001 0.0001

horseshoe 0.0091 0.0058 0.0017 0.0007

inverse gamma 0.0120 0.0071 0.0012 0.0005

➢ Similar patterns to the previous results

➢ The horse prior is superior when the parameter variance is higher, the

inverse gamma prior is superior with lower variance levels

➢ With higher variance settings, the advantage of the horseshoe prior is

larger

➢ With lower variance settings, the advantage of the inverse gamma prior is

smaller

➢ The accuracy of both priors are inversely proportional to the variance levels

Simulation Study Measuring Time-Varying Connectedness BCE, ÚNKP May 7, 2024 12 / 25



DY-Spillover Table Estimation

Requisite equations

➢ Bivariate TVP-VAR-SV II from Frame 11: yt = B1,tyt−1 + ϵyt ,

N ∼ (0,Σt), Σt = diag(exp(h1,t), exp(h2,t))

➢ TVP-VMA representation: yt =
∑∞

j=0 Aj,tut−j

➢ Spillover from j to i:

ϕij,t(H) =
Σ−1

jj,t

∑H−1
h=0 (e′

iAh,tΣtej)
2∑H−1

h=0 e′
iAh,tΣtA′

h,tej

Mean Absolute Error

MAEϕ̃ =
1

S × T × 4

S∑
s=1

T∑
t=1

K∑
k=1

J∑
j=1

|ϕ̃jk,t,s − ˆ̃
ϕjk,t,s|
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DY-Spillover Table Estimation - Results

Complete time frame

Table 5: Simulation results: VAR, abrupt

break in all coefficients, Diebold-Yilmaz

spillover table

c = 0.2

σ2
b 0.02 0.01 0.001 0.0001

horseshoe 2.13 1.22 0.99 0.84

inverse gamma 2.73 1.42 0.86 0.74

➢ The horseshoe prior estimates the

network better when the variance is

higher

➢ The inverse gamma is the better

when the parameters are less volatile

➢ The accuracy of both priors is

inversely proportional to the variance

level of the coefficients

Around the structural break

Table 6: Simulation results: VAR, abrupt

break in all coefficients, Diebold-Yilmaz

spillover table between t=95 and t=105

c = 0.2

σ2
b 0.02 0.01 0.001 0.0001

horseshoe 1.75 1.77 1.39 0.53

inverse gamma 1.87 2.23 3.16 2.23

➢ The horseshoe prior is better with

every setting

➢ The clear inverse relationship

between accuracy and variance levels

weakens, and it completely

disappears with the inverse gamma

prior
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Wrap Up



Findings

Behaviour of the priors

➢ With a given state-switching regime, the horseshoe prior performs better

when variance of the coefficients is higher, and also more effective in

the presence of structural breaks

➢ The accuracy of both priors is inversely proportional to the variance level

Estimating the DY-spillover table

With wider time window

➢ The horseshoe prior is superior with larger variance levels

➢ The inverse gamma prior is superior with smaller variance levels

➢ The accuracy of both priors is inversely proportional to the variance levels

With shorter time window around the structural break

➢ The horseshoe prior is superior regardless variance levels

➢ The clear inverse relationship between accuracy and variance levels

weakens, and it completely disappears with the inverse gamma prior
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Questions



Diebold-Yilmaz Framework II - Equations

➢ Base model (TVP-VAR-SV):

B0tyt = µt +B1tyt−1 + · · ·+Bptyt−p + ϵt, ϵt ∼ N (0,Σt)

➢ Compact form:

yt = µ̃t + B̃tzt−1 + ut, ut ∼ N (0, Σ̃t)

➢ Transforming into its TVP-VMA representation with recursive substitution:

yt = µ̃t +
∞∑
j=0

Aj,tut−j

➢ Generalized impulse response function of a shock in the jth variable:

Ψj,t(H) = Σ̃
− 1

2
jj,tAH,tΣ̃tej

➢ H-step-ahead forecast error variance:

FEVt(H) =

H−1∑
h=0

(Ah,tΣ̃tA
′
h,t)

➢ The proportion of the H-step-ahead forecast error variance of i which is

due to innovations in j:

ϕij,t(H) =

∑H−1
h=0 Ψ2

ij,t(h)∑H−1
h=0 FEVij,t(h)
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Bivariate TVP-VAR-SV - Equations in coordinate form

y1,t = y1,t−1b11,t + y2,t−1b12,t + ϵy1,t, ϵy1,t ∼ N (0, exp(h1,t)) (13)

y2,t = y1,t−1b21,t + y2,t−1b22,t + ϵy2,t, ϵy2,t ∼ N (0, exp(h2,t)) (14)

bjk,t = bjk,t−1 + cb,jk1(t = tb) + ϵbjk,t, ϵbjk,t ∼ N (0, σ2
b ) (15)

hi,t = hi,t−1 + ϵhi,t, ϵhi,t ∼ N (0, σ2
h), σ2

h = 0.12 (16)
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Bivariate TVP-VAR-SV I - Visualized Results

Figure 1: Mean Absolute Error of the two prior specifications without break and with

break in one coefficient
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Bivariate TVP-VAR-SV II - Visualized Results

Figure 2: Mean Absolute Error of the two prior specifications without break, with

break in one coefficient, and with break in all coefficients
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DY-Spillover Table Estimation - Visualized Results

Figure 3: Mean Absolute Error of the two

prior specifications in the estimation of the

DY-spillover table in complete time frame

Figure 4: Mean Absolute Error of the two

prior specifications in the estimation of the

DY-spillover table between t=95 and

t=105

Appendix Measuring Time-Varying Connectedness BCE, ÚNKP May 7, 2024 20 / 25



Gibbs-sampler I

Following Chan and Eisenstat (2018) and Prüser (2021)

Let y = (y′
1, . . . ,y

′
T )

′, θ = (θ′
1, . . . ,θ

′
T )

′,

Σθ = diag(Vθ11 , . . . , Vθ1kθ
, . . . , VθT1 , . . . , VθTkθ

), and

Σh = diag(Vh11 , . . . , Vh1n , . . . , VhT1 , . . . , VhTn). A sample of the posterior can

be obtained by sequentially drawing from the following conditional posterior

distributions:

1. p(θ|y,h,Σθ,Σh,θ0,h0)

2. p(h|y,θ,Σθ,Σh,θ0,h0)

3. p(θ0,h0|y,θ,h,Σθ,Σh)

4. p(Σθ,Σh|y,θ,h,θ0,h0)

Step 1

Rewrite the TVP-VAR model as y = Xθ + ϵ, ϵ ∼ N (0,Σ), where

ϵ = (ϵ′1, . . . , ϵ
′
T )

′, Σ = diag(Σ1, . . . ,ΣT ), and X = diag(X1, . . . ,XT ). We

can also rewrite the hierarchical prior as Hθθ = α̃θ + η, η ∼ N (0,Σθ), where
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Gibbs-sampler II

α̃θ = (θ′
0,0, . . . ,0)

′ and Hθ =


Ikθ 0 . . . 0

−Ikθ Ikθ

. . . 0
...

. . .
. . .

...

0 . . . −Ikθ Ikθ

.

It follows that (θ|Σθ,θ0) ∼ N (αθ, (H
′
θΣ

−1
θ Hθ)

−1), where αθ = H−1
θ α̃θ. It

can be shown that

(θ|y,h,Σθ,Σh,θ0,h0) ∼ N (θ̂,K−1
θ ),

where θ̂ = K−1
θ dθ with Kθ = H ′

θΣ
−1
θ Hθ +X ′Σ−1X and

dθ = H ′
θΣ

−1
θ Hθαθ +X ′Σ−1y.

Step 2

The auxiliary mixture sampler of Kim et al. (1998) in combination with the

precision sampler of Chan and Jeliazkov (2009) to sequantially draw each slice

of hi = (hi1, . . . , hiT )
′, i = 1, . . . , n.

Step 3

(θ0|y,θ,h,Σθ,Σh) ∼ N (θ̂0,K
−1
θ0

), (h0|y,θ,h,Σθ,Σh) ∼ N (ĥ0,K
−1
h0

),
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Gibbs-sampler III

where Kθ0 = diag(Vθ11 , . . . , Vθ1kθ
)−1 + 1

10
Ikθ ,

θ̂0 = K−1
θ0

diag(Vθ11 , . . . , Vθ1kθ
)−1θ1, Kh0 = diag(Vh11 , . . . , Vh1n)

−1 + 1
10
In,

ĥ0 = K−1
h0

diag(Vh11 , . . . , Vh1n)
−1h1.

Step 4 - Inverse Gamma Prior

(Vθj |y,θ,h,θ0,h0) ∼ IG

(
νθj +

T

2
, Sθj +

1

2

T∑
t=1

(θj,t − θj,t−1)
2

)
, j = 1, . . . , kθ

(Vhi |y,θ,h,θ0,h0) ∼ IG

(
νhi +

T

2
, Shi +

1

2

T∑
t=1

(hi,t − hi,t−1)
2

)
, i = 1, . . . , n

Step 4 - Horseshoe Prior

Following Makalic and Schmidt (2016), one can use the scalar mixture

representation of the half-Cauchy distribution: if X and w are random variables

such that X2|w ∼ IG( 1
2
, 1
w
) and w ∼ IG( 1

2
, 1), then X ∼ C+(0, 1).
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Gibbs-sampler IV

(τθj |θ,θ0, ντθj , λθt,j ) ∼ IG

(
T + 1

2
,

1

ντθj
+

1

2

T∑
t=1

(θj,t − θj,t−1)
2

λθt,j

)
, j = 1, . . . , kθ

(λθt,j |θ,θ0, ντθj , τθj ) ∼ IG

(
1,

1

νλθt,j

+
1

2

T∑
t=1

(θj,t − θj,t−1)
2

τθj

)
, j = 1, . . . , kθ

(ντθj |τθj ) ∼ IG

(
1, 1 +

1

τθj

)
j = 1, . . . , kθ

(νλθt,j
|λθt,j ) ∼ IG

(
1, 1 +

1

λθt,j

)
j = 1, . . . , kθ
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Gibbs-sampler V

(τhj |h,h0, ντhi
, λht,i) ∼ IG

(
T + 1

2
,

1

ντhi

+
1

2

T∑
t=1

(hi,t − hi,t−1)
2

λht,i

)
, i = 1, . . . , n

(λht,i |h,h0, ντhi
, τhi) ∼ IG

(
1,

1

νλht,i

+
1

2

T∑
t=1

(hi,t − hi,t−1)
2

τhi

)
, i = 1, . . . , n

(ντhi
|τhi) ∼ IG

(
1, 1 +

1

τhi

)
i = 1, . . . , n

(νλht,i
|λht,i) ∼ IG

(
1, 1 +

1

λht,i

)
i = 1, . . . , n
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