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Paradigm shift in financial modeling
> Lessons from the GFC: interconnectedness of assets and emergence of
abrupt structural breaks
> Growing importance of networks during turbulent periods as risks and

shocks spread across financial infrastructure

> New evidences: Covid-19 Pandemic (Lenza and Primiceri, 2020, Carriero
et al., 2021), Russo-Ukrainian war (Umar et al., 2022, Karkowska and
Urjasz, 2023)

Need for new approaches

> No existing framework to capture structural breaks when measuring
connectedness among participants of the network

> | propose a Bayesian approach to estimate connectedness in the
presence of structural breaks
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Preceding Studies

Capturing systemic risks
> Conditional Value at Risk (Adrian and Brunnermeier, 2011)
> Systemic and Marginal Expected Shortfall (Acharya et al., 2012)
> Granger-causality-based networks (Billio et al., 2011)
> Forecast Error Variance Decomposition based measures (Diebold and
Yilmaz, 2009, 2012, 2014)
Dynamic analysis of financial networks
(i) Rolling-window VAR models (Diebold and Yilmaz, 2012)

(ii) TVP-VAR with approximate Kalman-filtering method and forgetting factors
(Koop and Korobilis, 2013, Antonakakis and Gabauer, 2017)

(iii) Large Bayesian TVP-VAR model (Korobilis and Yilmaz, 2012)

Critics of existing methods
(i) slow adjustment to changes, arbitrary window size, loss of observation
(ii) overestimates real time-varying tendencies

(iii) can not account for larger, abrupt breaks in the system
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This Study

Value added

> TVP-VAR-SV model with hierarchical prior specifications (Priiser, 2021)
mixed with the DY-framework

> Assessing estimation efficiency of the two priors through a three-step
Monte Carlo simulation

Monte Carlo simulations

1. Univariate unobserved component model to analyze the properties of
the priors on a broader scale than Priiser (2021) has done it

2. Bivariate TVP-VAR-SV(1) with three different structural break regimes
3. Applying the DY-framework on the time series generated in Step 2

Results

> The accuracy of the two prior specifications heavily dependent on variance
levels and break-profile of the system

> The accuracy patterns descend when we estimate connectedness
> The horseshoe prior is more accurate around the structural break

Measuring Time-Varying Connectedness BCE, UNKP May 7, 2024 3/25



Methodology




Bayesian Framework | - Model Description

Time-Varying Parameter Vector Autoregression with Stochastic Volatility
(TVP-VAR-SV) following Eisenstat et al. (2015)

Structural form:
Boty: = pt + Bueye—1 + - + Bpiyi—p + €, € ~N(0,%;)
Reduced form:
yi = Xtﬂt + Weiye + €, €~ N(07 3)
State-space representation:
ye=Xi0, + €, e ~N(0,X,)
Time varying parameters:

it = 0j,e—1 +nje,  Mje ~ N0, Ve, ,)

Stochastic volatility:

3; = diag(exp(hit),...,exp(hn:)) and
higy = hig—1+ &, & ~N(O,Vh,,)
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Bayesian Framework Il - Prior Specifications

Chan and Eisenstat (2018), Priiser (2021)

Inverse Gamma Prior

> Assume the prior variances of 8; and to be constant

> Vo, ~ IG(ve;,50;), Va; ~ IG(Vn;,Sh;)

> Shape parameters: vp, = vh; =5

> Scale parameters Sp, and Sj,; are set to produce means of 0.01% and 0.12
>

Favors many smaller, gradual changes

Horseshoe Prior

> Global-local shrinkage prior, often used with sparse settings (NOT HERE!)
> Voo =TajAa;qs /T2, ~CT(0,1), /As;, ~C*(0,1), z€{0,h}
> 7 global shrinkage parameters, A local shrinkage parameters

> Allows for many smaller gradual changes, few larger abrupt breaks or the
mix of these
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Diebold-Yilmaz Framework

Advantages
> No need for special conditions apart from the ones necessary for the
identification of the VAR model

> Easy interpretation of the results: weighted and directed graphs
> Suitable for both macro- and micro-level analysis

> Generalization of Granger-causality-based networks

Concept

> Base: VAR model in its Wold-representation form

> Forecast Error Variance Decomposition (FEVD) from non-linear
transformation of the coefficient and covariance matrices

> The transmission of shocks among time series can be analyzed by this

decomposition
> Summarize the FEVDs for all time series in the DY-connectedness table
> Aggregation by row: shocks received from the system, aggregation by

column: shocks emitted to the system
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Simulation Study



Univariate Example | - Break in Unobserved Component

Univariate Unobserved Component Model with Stoch Vol (Priiser, 2021)
yo =T+ e, € ~N(0 exp(h)) (1)
m=Ti_1+clt=1t,)+€, € ~N(0,02), c=2, o2=0.1° (2)

he = hi_1 + €, € NN(O,J;QL), o7 =0.12 3)

Original
Horseshoe
1}k Inverse gamma | 1

T s
MAE, = e — Fo
T TXS;;Tf Tart

A
L A
of r‘\\”l‘ll\ \V bJ v » Table 1: Simulation results: Univariate

Q{w \ example, abrupt break in a coefficient
05| L |

horseshoe  inverse gamma
At 1 c=0 0.07 0.07
c=2 0.05 0.11
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Univariate Example Il - Break in Stochastic Volatility

Univariate Unobserved Component Model with Stoch Vol
Yt =Tt + etyv 6% ~ N(07 emp(ht)) (4)
Tt = Tt—1 + €, € NN(O,O’E), 02 =012 (5)

he =hi_1+cnl(t =tp) + €, e ~N(0,07), cn=05 op=01> (6)

08 T
QOriginal
Horseshoe

06 Inverse gamma | |

04t

i =2 X
Aﬂﬂ ﬁ( | MAEh:TxSZZ|ht_hs,t|

0zl
Table 2: Simulation results: Univariate

LA, ,uﬂ\‘,[\\l | example, abrupt break in a coefficient

0 "‘“ VW i horseshoe inverse gamma
oal | c=0 0.07 0.08
c=2 0.06 0.09
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Bivariate TVP-VAR-SV | - Break in One Coefficient

Model Equations (Antonakakis et al., 2020, Priiser, 2021)

yt = Biyi-1 + €/, € ~N(0,diag(h:)) (7)
Bi=Bi_ 1+ Cyil(t =t;) + €, s ~N(0,07) (8)
hi=hi1+e€!, € ~N(0OZ") (9)
0.6 0.3 02 0 012 0
By = , Cyi= , S = .
0.3 0.6 0 0 0 0.1

Mean Absolute Error

S K J
MAEb = m Z Z Z Z |bjk,t,s - Bjk,t,s‘
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Bivariate TVP-VAR-SV | - Results

Table 3: Simulation results: VAR, abrupt break in one coefficient

c=0.2 c=0
ot 0.02 0.01 0.001  0.0001 0.02 0.01 0.001  0.0001
horseshoe 0.0100 0.0061 0.0019 0.0008 | 0.0098 0.0061 0.0020 0.0009
inverse gamma  0.0123  0.0065 0.0010 0.0003 | 0.0118 0.0063 0.0009 0.0002

> Results differ from those of Priiser (2021): the superiority of the horseshoe
prior is not that straightforward

> With relatively higher parameter variance, the horseshoe prior is more
accurate, the inverse gamma prior is better with lower variance levels

> With a given level of variance, the horseshoe prior is better in the presence
of breaks and the inverse gamma prior is better in their absence
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Bivariate TVP-VAR-SV Il - Break in All Coefficients

Model Equations (Antonakakis et al., 2020, Priiser, 2021)

yt = Biyi—1 + €, € ~N(0,diag(exp(ht))) (10)
B; = B; 1 +Cb,t1(t:tb)+€?7 Egk,t NN(OMTIE) (11)
hi=h.1+e€, € ~N(0,%") (12)

0.6 0.3 02 —0.2 012 0
B, = ; Chi = P L %
0.3 0.6 —-0.2 0.2 0 0.1
Mean Absolute Error

S K J
MAEb = m Z Z Z Z |bjk,t,s - Bjk,t,s‘
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Bivariate TVP-VAR-SV Il - Results

Table 4: Simulation results: VAR, abrupt break in all coefficients
c=02
Uf 0.02 0.01 0.001 0.0001
horseshoe 0.0091 0.0058 0.0017 0.0007
inverse gamma  0.0120  0.0071  0.0012 0.0005

> Similar patterns to the previous results

> The horse prior is superior when the parameter variance is higher, the
inverse gamma prior is superior with lower variance levels

> With higher variance settings, the advantage of the horseshoe prior is
larger

> With lower variance settings, the advantage of the inverse gamma prior is
smaller

> The accuracy of both priors are inversely proportional to the variance levels
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DY-Spillover Table Estimation

Requisite equations

> Bivariate TVP-VAR-SV Il from Frame 11: y;: = By :y:—1 + €/,
N ~(0,3), X = diag(exp(ha,t), exp(ha,t))

> TVP-VMA representation: y¢ = > 72 Ajiti—;

> Spillover from j to i:

P2 (H) = 7J,tz (e A tzteJ)
B =

H-1
tho eiAh,tEtAh,tej

Mean Absolute Error

S K J ~
MAE; = =~ T Sy Z::ZZZ |k b6 — Binsts

1t=1 k=1 j=1

Simulation Study Measuring Time-Varying Connectedness BCE, UNKP May 7, 2024 13 / 25



DY-Spillover Table Estimation - Results

Complete time frame
Around the structural break

Table 5: Simulation results: VAR, abrupt
break in all coefficients, Diebold-Yilmaz
spillover table

Table 6: Simulation results: VAR, abrupt
break in all coefficients, Diebold-Yilmaz
spillover table between t=95 and t=105

c=02
o? 002 00l 000l 0.0001 _ E=02
horseshoe 2.13 1.22 099 0.84 b 0.0280.01710:001770-0001
inverse gamma 273 142  0.86 0.74 horseshoe 1.75 1.77 1.39 0.53

inverse gamma  1.87 223 316 2.23

> The horseshoe prior estimates the

. . > The horseshoe prior is better with
network better when the variance is

. every settin
higher y &
. . > The clear inverse relationshi
> The inverse gamma is the better s

. between accuracy and variance levels
when the parameters are less volatile

weakens, and it completely

> The accuracy of both priors is disappears with the inverse gamma

inversely proportional to the variance prior

level of the coefficients
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Wrap Up




Behaviour of the priors

> With a given state-switching regime, the horseshoe prior performs better
when variance of the coefficients is higher, and also more effective in
the presence of structural breaks

> The accuracy of both priors is inversely proportional to the variance level

Estimating the DY-spillover table
With wider time window

> The horseshoe prior is superior with larger variance levels

> The inverse gamma prior is superior with smaller variance levels

> The accuracy of both priors is inversely proportional to the variance levels
With shorter time window around the structural break

> The horseshoe prior is superior regardless variance levels

> The clear inverse relationship between accuracy and variance levels
weakens, and it completely disappears with the inverse gamma prior
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Questions



Diebold-Yilmaz Framework Il - Equations

> Base model (TVP-VAR-SV):

Boiy: = pe + Bieyi—1 + -+ Bpiyi—p + €, €~ N(O, )
> Compact form:

Ye = fis + Etzt—l +ue,  ue ~N(O, it)
> Transforming into its TVP-VMA representation with recursive substitution:
ye = e+ ZA]',tutfj
j=0
> Generalized impulse response function of a shock in the jth variable:
W (H) = i;j,%tAHytitej

> H-step-ahead forecast error variance:
H-1

FEV,(H) =Y (An:ZiA},)
h=0
> The proportion of the H-step-ahead forecast error variance of ¢ which is

due to innovations in j:

H-1 g
bise(H) = neo Zise(h)
P T ST T E R A(h

h=0 I//( )
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Bivariate TVP-VAR-SV - Equations in coordinate form

Y10 = yre-1b11e +y2e-1bioe + €, €], ~ N(0,exp(hae)) (13)
Yo,6 = Y1,e—1b21,t +y2,6.—1b22¢ + 637“ e%,t ~ N (0, exp(hz,t)) (14)
bikt = bjk,t—1 + b jxl(t =tp) + G?k,m EI?k,t ~ N (0, Ug) (15)

hit = hit—1 + Eiﬁn E;L,t NN(OAT%% on =0.1° (16)
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Bivariate TVP-VAR-SV | - Visualized Results

Figure 1: Mean Absolute Error of the two prior specifications without break and with
break in one coefficient
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Bivariate TVP-VAR-SV |l - Visualized Results

Figure 2: Mean Absolute Error of the two prior specifications without break, with
break in one coefficient, and with break in all coefficients
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DY-Spillover Table Estimation - Visualized Results

Figure 4: Mean Absolute Error of the two
prior specifications in the estimation of the
DY-spillover table between t=95 and
t=105

Figure 3: Mean Absolute Error of the two
prior specifications in the estimation of the
DY-spillover table in complete time frame
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Gibbs-sampler |

Following Chan and Eisenstat (2018) and Priiser (2021)

Lety = (y1,...,y7)", 0 =(61,...,07)",

29 = diag(VQH,‘ . '7V91k97' . .,Vng, . ‘,Vnge), and

3n =diag(Vaiys- s Varns ooy Vg -+ Vap,, )- A sample of the posterior can
be obtained by sequentially drawing from the following conditional posterior

distributions:

ale p(6|y7h 2972h3007h0)
2. p(hly,0,%¢,3,00, ho)
3. p(6o, holy,0,h, %, 3)
4. p(X9, X1y, 0, h, 00, ho)

Step 1

Rewrite the TVP-VAR model as y = X0 + €, € ~ N (0,3), where
e=(€,...,€p), ¥ =diag(Z1,...,27), and X = diag(X1,..., Xr). We
can also rewrite the hierarchical prior as Hy0 = &o +n, 1 ~ N(0,Xy), where
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Gibbs-sampler |1

I, 0 0
—I I 0

&0 = (96707 .. -70)/ and H@ = ko ko
0 ... -L, Iy

It follows that (8|34, 00) ~ N (o, (Héxngg)_l), e Gy = Hgldg. It
can be shown that
(6ly, h, So, B, 00, ho) ~ N (8, K, ),

where 8 = K, 'dy with Ky = H)S,'Hy + X'S7' X and
do = H)Y, 'Hoap + X' 'y.

Step 2

The auxiliary mixture sampler of Kim et al. (1998) in combination with the
precision sampler of Chan and Jeliazkov (2009) to sequantially draw each slice
th»L' = (hil,...,hiT)/, = 1,.,.,n.

Step 3
(00|y7 97 h7 297 Eh) ~ N(é07 Ketjl)a (ho‘y, 01 h7 297 Eh) ~ N(il’(): K;01)7
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Gibbs-sampler 111

where K90 = diag(%u?' 009 ‘/91k9 )71 + liOIks'
90 K, dzag(veu’--~7V91k9)7101v K, :diag(vhuv"'vvhln)71+%OI"’
hO Kho dzag(Vth...,Vhl")ilhl.

Step 4 - Inverse Gamma Prior
T 1 &
(V9_7 ly,0,h,60,ho) ~ IG (7/9‘7 + 35 So; + 2 Z(@j,t — Qj,t1)2> ,i=1,...,ke
t=1

T
T 1 .
(V}Li|y70:ha 007h0) ~1G (V’Li + 5, Sh,i + 5 ;(hi,t - hi1t—1)2> , 1= 1, coogqll

Step 4 - Horseshoe Prior

Following Makalic and Schmidt (2016), one can use the scalar mixture
representation of the half-Cauchy distribution: if X and w are random variables
such that X?|w ~ IG(3, 1) and w ~ IG(3,1), then X ~ CT(0,1).

27w
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Gibbs-sampler IV

TP . )
(7o, ""’Me,x,,)wG(Nl : +;Z(91¢9N1)>’j_1,.,.7ke

T7 l/
7'9]_

o 2
1 1 0. — 0., ‘
(Ao:.;10, 80,17y, 70;) ~ IG (17V +f§ M)’]—l,...,ke

2
20,5 t—1

1

(2, ,1Re, ;) ~ IG (1’ 14
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Gibbs-sampler V

T
T+1 1 1 hie—hi1)?\ .
(T 1By ho, Ve, Any ) ~ TG <; L 2ZM> i=1....n

T o 2
(A,m|h,h0,,,7h_77hi)NI(;(L 1 +1Z(h“h“‘l)>,i—1,...,n
, : - —
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