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Könyvtárak betöltése
library(mvtnorm)
library(vars)

## A szükséges csomag betöltődik: MASS

## A szükséges csomag betöltődik: strucchange

## A szükséges csomag betöltődik: zoo

##
## Kapcsolódás csomaghoz: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric

## A szükséges csomag betöltődik: sandwich

## A szükséges csomag betöltődik: urca

## A szükséges csomag betöltődik: lmtest
library(ggplot2)

Kétváltozós adatgeneráló folyamatok
Az adatgeneráló folyamat

Xt = (I − B0)−1B1Xt−1 + Et

Ahol a B0 és B1 mátrixokat különbözőképp variáljuk a következő szimulációk során. Et ∼ N(0, Σ)

Szimulációkhoz szükséges függvények

generate_sim_dag <- function(n, B0, B1, sigma, d = dim(B0)[1]){
# órai GY11_6-ból, átírva

X <- matrix(0, nrow=n, ncol=d)
E <- rmvnorm(n, sigma = sigma)
for (t in 2:n){

X[t,] <- solve(diag(d) - B0) %*% (B1 %*% X[t-1,] + E[t,])
}
res = as.data.frame(X)
colnames(res) = paste0("x", 1:d)
res
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}

check_granger <- function(x, sig = 0.05){
# órai GY11_6-ból, átírva
varfit <- VAR(x, p = 1, type="const")

tab <- summary(varfit$varresult$x1)$coefficients
pval <- tab[grep("x2", rownames(tab)), "Pr(>|t|)"]

res <- list()
res$pval <- pval
res$reject <- pval < sig

res
}

MC_sim <- function(n, B0, B1, sigma, nsim = 10){
MC_res <- sapply(rep(n, nsim),

function(x){generate_sim_dag(x, B0, B1, sigma) |>
check_granger()})

res <- list()
res$reject <- sum(unlist(as.data.frame(MC_res)[2,])) / nsim
res$list <- MC_res
res

}

B1 <- diag(0.9,2)
B0 <- matrix(0,2,2)
sigma <- diag(1,2)

# MC_sim(200, B0, matrix(c(0.9,0,0.3,0.9),2,2), matrix(c(1,0.8,0.8,1),2,2), 100)
# generate_sim_dag(50, B0, matrix(c(0.9,0,0.3,0.9),2,2),sigma = matrix(c(1,0.8,0.8,1),2,2)) |> check_granger()
# generate_sim_dag(80, matrix(c(0,0,1,0),2), diag(0.9,2), diag(1,2)) |> VAR() |> summary()
# generate_sim_dag(80, matrix(c(0,0,2,0),2), matrix(c(0.9,0,-1,0.9),2), diag(1,2)) |> VAR() |> summary()
# generate_sim_dag(80, matrix(c(0,0,0,0),2), matrix(c(0.9,0,0,0.9),2), matrix(c(1,-.9,-.9,1),2)) |> VAR() |> summary()

Mintaelemszám és azonnali kapcsolat erőssége

Azt vizsgáljuk, hogy mekkora elemszámok mellett milyen arányban érzékeljük az azonnali kapcsolatot Granger
okságként.
nsim = 100
B0s <- seq(0, 0.2, length.out = 15)
n_vec <- floor(10*2ˆseq(2,7, length.out = 15))
params <- expand.grid(B0s, n_vec)
res <- list()
for(i in 1:(nrow(params))){

if(i%%100==0) print(i)
rej <- MC_sim(params[i,2], (function(x){matrix(c(0,0,x,0),2,2)})(params[i,1]),

B1, sigma, nsim)$reject
res[[i]] <- data.frame(B0 = params[i,1], n = params[i,2], reject = rej)

}

## [1] 100
## [1] 200
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res_df <- do.call(rbind, res)
ggplot(res_df, aes(x=B0, y=n,z= reject))+

geom_contour_filled(breaks = c(0,0.1,0.2,0.4,0.6,0.75,0.9, 1.1))
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Kapcsolat erősségének és zaj méretének kapcsolata

Előzőhöz hasonlóan, de n = 50, és a zaj (Et) méretén változtatunk
nsim = 200
B0s <- seq(0, 0.5, length.out = 9)
zaj <- 10ˆ(seq(-2, 0.5, length.out = 9))
params <- expand.grid(B0s, zaj)
res <- list()
for(i in 1:(nrow(params))){

if(i%%100==0) print(i)
rej <- MC_sim(50, (function(x){matrix(c(0,0,x,0),2,2)})(params[i,1]),

B1, sigma*params[i,2], nsim)$reject
res[[i]] <- data.frame(B0 = params[i,1], zaj = params[i,2], reject = rej)

}

res_df <- do.call(rbind, res)
ggplot(res_df, aes(x=B0, y=zaj,z= reject))+

geom_contour_filled(breaks = seq(0,1.01, by=0.1), show.legend = F)
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Elemszám és zaj méretének kapcsolata fix kapcsolaterősség mellett

nsim = 200

n_vec <- floor(10*2ˆseq(2,5, length.out = 15))
zaj <- 10ˆ(seq(-2, 0.25, length.out = 15))
params <- expand.grid(n_vec, zaj)
res <- list()
for(i in 1:(nrow(params))){

if(i%%100==0) print(i)
rej <- MC_sim(params[i,1], (function(x){matrix(c(0,0,x,0),2,2)})(0.1),

B1, sigma*params[i,2], nsim)$reject
res[[i]] <- data.frame(n = params[i,1], zaj = params[i,2], reject = rej)

}

## [1] 100
## [1] 200
res_df <- do.call(rbind, res)
ggplot(res_df, aes(y=n, x=zaj,z= reject))+

geom_contour_filled(breaks = seq(-0.01,2.01, by=0.1), show.legend = F)
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Zajok korrelációján keresztül van kapcsolat

Próbáltunk olyat is, hogy nincsen tényleges ok-okozati kapcsolat, de a zajok erősen korrelálnak. Ennél, mivel
a VAR erre korrigál, így nem torzítja az együtthatók becsléseit.
nsim = 50
corr <- seq(0,1, length.out = 15)
n_vec <- floor(10*2ˆseq(2,5, length.out = 15))
params <- expand.grid(n_vec, corr)
res <- list()
for(i in 1:(nrow(params))){

if(i%%100==0) print(i)
rej <- MC_sim(params[i,1], B0,

B1, (function(x){matrix(c(1,x,x,1),2,2)})(params[i,2]), nsim)$reject
res[[i]] <- data.frame(n = params[i,1], corr = params[i,2], reject = rej)

}

## [1] 100
## [1] 200
res_df <- do.call(rbind, res)
ggplot(res_df, aes(y=n, x=corr,z= reject))+

geom_contour_filled(breaks = seq(0,0.2, by=0.05), show.legend = T)
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Azonnali és késleltetett ok-okozati kapcsolatok hatása VAR együttható becslésre

Ha van azonnali és késleltetett hatásunk is, és ezek ellentétes előjelűek, akkor ezek a hatások képesek egymást
gyengíteni, annak ellenére, hogy mind a kettő fennáll, olyan, mintha semmilyen hatás nem lenne.
nsim = 100
B1 <- matrix(c(1,0,1,1),2)
B0s <- seq(-2,0, length.out = 15)
n_vec <- floor(10*2ˆseq(2,6, length.out = 15))
params <- expand.grid(n_vec, B0s)
res <- list()
for(i in 1:(nrow(params))){

if(i%%100==0) print(i)
rej <- MC_sim(params[i,1], (function(x){matrix(c(0,0,x,0),2)})(params[i,2]),

B1, sigma, nsim)$reject
res[[i]] <- data.frame(n = params[i,1], B0 = params[i,2], reject = rej)

}

## [1] 100
## [1] 200
res_df <- do.call(rbind, res)
ggplot(res_df, aes(y=n, x=B0,z= reject))+

geom_contour_filled(breaks = seq(0,1.1, by=0.1), show.legend = T)

6



200

400

600

−2.0 −1.5 −1.0 −0.5 0.0
B0

n

level

(0.1, 0.2]

(0.2, 0.3]

(0.3, 0.4]

(0.4, 0.5]

(0.5, 0.6]

(0.6, 0.7]

(0.7, 0.8]

(0.8, 0.9]

(0.9, 1.0]

(1.0, 1.1]

Hyvarinen második példa
Az adatgeneráló folyamat

Xt = (I − B0)−1B1Xt−1 + Et

Ahol:

B0 =

0 0 0
1 0 0
0 1 0


B1 =

0.9 0 0
0 0.9 0
0 0 0.9


B0 <- matrix(c(0,1,0,0,0,1,0,0,0),3)
B1 <- diag(0.9,3)
sigma<- diag(1,3)

generate_sim_dag(50, B0, B1, sigma) |> plot.ts()

7



−
4

0
2

4

x1

−
30

−
10

0
10

x2

−
10

0
0

50

0 10 20 30 40 50

x3

Time

generate_sim_dag(50, B0, B1, sigma)

Megvizsgáljuk azt is, hogy X3-at a teszt szerint Granger okozza-e X1 közvetlenül. (Mivel közvetlenül nem
okozza, így Spurious Granger okság)
nsim = 500
n_vec <- floor(10*2ˆseq(1,4, length.out = 15))
res <- list()
for(i in n_vec){

mres <- c()
for(j in 1:nsim){

tres <- generate_sim_dag(i, matrix(c(0,1,0,0,0,1,0,0,0), 3, 3), B1 = diag(0.9,3),diag(1,3)) |> VAR() |> summary()
pval = tres[["varresult"]][["x3"]][["coefficients"]][1,4]
mres <- c(mres,pval)

}
res[[as.character(i)]] <- data.frame(N=i, pval = mean(mres))

}

res_df <- do.call(rbind, res)
ggplot(res_df, aes(y=pval, x=N))+

geom_line() + ggtitle("Spurious Granger okság változó szignifikanciaszintje")
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Spurious Granger okság változó szignifikanciaszintje
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